version 2.4.2

Reference Manual

Michael Freed
Eric Dahlman
Michael Dalal
Robert Harris

SA Ames Research Center

© 2003 NASA Ames Research Center
All trademarks are the property of their respective owners.

Printed in the United States of America.
Layout Design: Reagan Jew

Edition: October 29, 2003

NASA Ames Research Center

Moffett Field, CA 94035

(650) 604-5000

apexhelp@eos.arc.nasa.gov

http://human-factors.arc.nasa.gov/apex

mailto:apexhelp@eos.arc.nasa.gov
http://human-factors.arc.nasa.gov/apex

Contents

Contents i
1.0 Introduction 1
1.1 WWNBLIS ADEX? ...ceeeeeeeeseeeermseeeeesssseessssesessssesssssssesessssessessss s ssssseseesssesessssesssssssesessasassssssesssssseseess 1

1.2 SySEM COMPONENLSccoureeeseeesseesseesssseesssesssseessssesssssessssessssssesssssessssesssssessssesssssessssesssasessans 2

1.3 Getting MOre INFOMBON..........ccuuueeeueeesseeesseessseesssseessseesssesssssesssessssesssssesessssssssssssesssasesssas 3

14 CONVENHONS ...coevrreereeeneeesreeseeesseessseessessssessssesssessssessssessssesssessssessssessssesssessssessssesssessssessssesssssssens 4

20 Getting Started 5
2.1, SEHING UP ..vceereeeeeesseeessseessseesssseessssesssses s esssessssse s s bbb bbb 5

2.2 QUICK TOUI ..coreereeeeeereeeseeesseessseesseesssesssseessessssessssessssesssessssessssesssessssessasesssessssessssesssessssesssssssssessans 5

3.0 Using Apex 9
3.1 INEraCHNG VWIN ADEX.......cevmeeeureeeneeeiseessseesssesssseessssesssssesssssesssssesssssessssesssssassssssssssssssssessssseees 9

3.2 Introduction t0 APEX APPICALONS..........ccereerreseeesreeseeeseeesseesseessesesseesseesssseseesssessssessssssssees 10

3.3 Loading @N APPICEHONveeeeerreeeeeemseeeeeesseeesseessseesseessseessssesssessssessessssessssssssessssessssssssessssees 10

34 RUNNING 8N APPICEHONeoveereereeeseeeseeeseeeseeesseessseesseeessesssssesssesssssessessssessssssssessssesssssssessasees 11

3.5 Creating @ NeW APPICAHONoveurreeeeeeeeereeesseeeeeesseeesseeesseessseessesesseessseesssssssessssessssssssessssees 12
3.5.1 Lisp Programming @nd EMECScueueeememsmeeesmeesmssesssseessseesssssssssesssssesssneess 12

3.5.2 Application DEfINHION Fileccurreerreereeereeeseeesseeeseesseeesseeessecsseeessesesseesssessssesssssesees 12

ICRSTC T Ao Tor= 110 gl o OSSN 12

B I o =11 PPN 13

3541 USING LIDFAMES......ccorieemrreemeeesreesssesssseessssessssessssesssssesssssssssssessssssssssssssanes 13

3.54.2 Creating LIDranes..........cvuueeueeemmeeeeessseessseessssssssesssssessssessssssssssssssanes 13

3.54.3 FINAING LIDFANES........ccoueeemeeeeeeessreeesreesiseessssessssesssessssssessssesssssessssssssanes 14

3544 Provided LIDraMES..........cccueeueeesreesseesssessssesssssssssesssssesssssesssssesssssessanes 14

3.5.5 WOHADUIIAET........coomeeeeeeeneeemeeesseeesseesseesssseessssesssssessssessssesssssessssesssssssssssessssesssaseses 15

3.6 User Settings and Oer FIlES..........ccueueeueeeseeeseeesseesssseessssessssessssssessssssssssssssssssssssssanas 15

3.7 ADEX OUIDULoceeeeeeeeeeseeeeeesseeesseesseeesseesssessseesssessssesssssessessssesssessssessssessssesssessssesssssssessaseees 15
3.7.1 Generating EVENE TraA0ES........ccueeueeeereeeressseessessssesssssessssesssssssssssssssssesssssessaseees 15

3.7.2 Generating and Examining PERT Chartscoccoeeresneeessessseessneees 17

3.7.3 Exporting a PERT Chart to Microsoft POWErPoINt................cceeemeeemmeeessensneees 17

3.8 SYSIEM PAICNESooeeeeeteceieceeeeseess s sss e sssseeess s sss s s eba 18

3.9 GEHING HEID.....ceeeeeeeeeeteeetreees et ss bbb 18

4.0 Procedure Description Language (PDL) 19
4.1 Action Selection ArChiteCtUE (ASA)ceeeeeereesereeesseesssesssseessssessssseesssssessssesssssesssseees 21

4.2 PDL SYNEAX...0011rrertrrrreeesseeeessseseesssesesssseesessssesessssesssssssesssssssesessssesssssssssssssesessssessssssessssssesssssseses 23
A2 DLOCEAULEoceeeereteeeeereetesseessesessssesessessssssessssssssesssss s sasessssssssssessssessssssasessssessaneanes 23

A.22 IDAEX...uuuereeuuereessreeesssseeeessseseesss e sssss e eRa A RR SRR AR R AR R AR 25

G T 1 = < OO 26

A28 WALEEOL ..oueeeeeeeceeceteeeeeee et ee s s sass s s st es e s sessase s sssane s sssanesns 27

A25 SELECL ettt ee e es st sane st sane s 29

A20 POILLOA c.eeeeeeecereeteeeeeeeeesseeasesesssesesessssssessss s sssssss s sasesss s sasesessassanssssasessssessanesnes 29

A2T FOLALL ooeeeeeeeeeeeeteeeeeee e sseaeesesssse s sesssse s s s ssseass s sase s s s sessass s sessasessssssaneses 30

Apex Reference Manual (version 2.4.2) - Contents m

428 DLOMLE ..oooveeeereereereeses st ss s s s e s s 31

429 DPriorify ..t sesssessses s s s s e 32

4210 iNterTUDL=COSL .oorrcrireercercetee st s s bbb s sass bbb s s ssnsans 33

R YT L =Y 33

R S T oy = L= X A

A2.13 LANKoceveecveeereeeseeeseessesssssessss bbb s s s s e s bR s a st aneees 35

4.3 PDLPMIGVES........ccoeeeureeeeerseerisesssssessssessssssessssssssssssassssssssssssssssssssssssssssssssasssssssasssasssasssanes 36
431 StATt-ACLLIVILY oottt s s bbb s bbb s s annans 36

LG T TN 1k b oY= oY 37

G TG T Y= =Y 38

434 COGEVENLoceeeeeererereersesesssss s sesssesssss s s s s s bbb s s s s 38

435 TEPTAIOTILLZE oottt bbb bbb 39

N R Yo X e Y=o UL =Y 39

437 TELEASE-TESOULCE.oceceeererreeseesessssis s sssssssss s s sssssssssssssss s sss s sssasesss s sssasens 39

44 PDLVAMADIEScuereereerereesessesieseessssesssesesssss s sessssssessassssssssasssssssssassssssassassssssassasesssansanes 40

45 MiISCEIANEOUS FEAIUIES...........ocueeeeecerereererseeee st sse s sss s sessas s sessass s s s 42
451 AGENt’s INMAl TASKvveueeemeeesrensmeeessseeessseessssesssseessssesssssesssssessssssssesssssesssssssssseseesd 42

452 PDLParttions (BUNAIES)........c.eeureemmeesmeeesmeesseeessseesssssessssssssssssssesssssesssssssssseseess 42

5.0 Apex Programming Guide 43
ST Y o e OO R PP 43

5.2 APPICALON INEEITACE........oreeeeeereeeeeeereeeseeeseresseeesseeeeeesseeesseessseesssesssssessessssessessssessssesssssssessasees 45

LSRG T Y=oV o 46

54 AefapDliCAtION cocrrcersereeseesssssessessssssssssssssass e sasss s ssss s bbb s s snssnssssasasans 46

5.5 EVENELOGGING ..cveurreureermemsmeesssseesssessssesssssesssssesssseesssssessssessssses st sss s ssssesssssessssssssssesssanes 47

5.6 PaUSING SIMUIGHONScvvueeuueeenseessseeessseessseessssesssseessssesssssessssessssesssssessssesssssesssssssssesssanas 48

BT SIMOD ..ottt s s s s s s s e e 49

5.8 Specifying NEeW AQENT RESOUITES...........rwueeereeesessseessseessssssssssessssesssssssssssssssssesssssessanss 49
References 52
Glossary 53
Appendix A: Event Traces 54
A1 Predefined SNOW-LEVEIS ...ttt sanes %

A2 Lisp Commands for Controlling Trace OULPUL............ecereeereeemreeereesseeesseeseeesseeesseeseeesseeeens %

A3 Trace CONSHAINT SYNEAXccuureeuserrmeeessreessseessseesssseessssessssssssseesssssessssesssssssssssesssssessssssssseess 55

AL EVENE TYPES.....covueeuseeesseeessseessssesssssessssesssssesssssessss e ssss e sess b ess st sessssenees 55
Appendix B: Apex Library 59
Appendix C: Troubleshooting 60
C.1 ComMMON ProODIEMS ..ottt s s s s ssssssssssssssssssnsans 60

C.2 KNOWN BUGS......coureeemeeeseeessesssseesssesssssessssssssssesssssssssssessssssssssssssssesssssessssesssssesssssessssesssssessssnes 61
Appendix D: Pattern Matching 62
Appendix E: Application Definition File Example 63
Appendix F: Starting Apex within Allegro Common Lisp 66

Apex Reference Manual (version 2.4.2)

- Contents ﬂ

1.0 Introduction

11 What is Apex?

Apex is a computer application for generating adaptive, intelligent behavior in complex
environments. It is the principal element of the Apex System that includes a range of
components for modeling, simulating and analyzing human behavior. Intended uses in-
clude:

» Helping engineers evaluate and design human-machine systems

* Anticipating how newly introduced technologies will affect human operators
» Standing in for human participants in a training simulation

» Exploring or illustrating scientific theories of human performance

The Apex approach to human modeling separates aspects of behavior and performance
that apply to intelligent agents in general from aspects that are particular to humans.
The Action Selection Architecture (ASA) integrates Al techniques such as hierarchi-
cal planning and online-scheduling seen as useful for creating agents with human-lev-
el ability. By building capabilities into the architecture and providing a high-level lan-
guage for behavior representation, Apex makes it easier to create human agent mod-
els for complex task environments. Findings from cognitive psychology and other ar-
eas concerned with human performance are incorporated into the Human Resource Ar-
chitecture (HRA), which parameterizes and constrains the general agent model. A hu-
man model in Apex combines the ASA and HRA with a set of behavior representations,
some specific to the task at hand, others general across many tasks.

Apex is meant to be a practical tool. It has proven successful in automating a Hu-
man-Computer Interaction analysis method called GOMS, including an especially pow-
erful but complex variant called CPM-GOMS. The approach has also been useful for
rapidly developing simulations of normative human behavior and for reconstructing in-
cidents involving human error.

As a practical tool, one crucial consideration is to minimize the time and exper-
tise required to build new models. This goal influences every aspect of Apex. For exam-
ple, in production-system based cognitive architectures, behaviors are represented at an

Apex Reference Manual (version 2.4.2) - Introduction m

“atomic” level at which the mechanisms of cognitive processing can be described in de-
tail. In Apex, behavior is represented at a high-level, allowing modelers to ignore how
behavior is generated and focus on what behaviors are desired. This can be viewed as
trading usefulness at representing scientific theories of cognition for usefulness at rep-
resenting complex, large-scale tasks. Similarly, Apex incorporates approaches to many
high-level aspects of cognition such as selecting action under uncertainty, managing
concurrent tasks, and task interleaving. These capabilities are relatively easy to invoke
though a modeler is provided little flexibility in representing how they are realized.

In developing Apex, it has become clear that constructing a practical, broadly ap-
plicable human-system modeling tool is too great a job for any small team of individ-
uals. Given the great number of issues to be addressed and the many different kinds of
expertise needed, such an endeavor is most naturally carried out through a distributed
development process. The design of the Apex system lends itself to distributed develop-
ment. While the Action Selection Architecture is complex and its subcomponents tight-
ly coupled, the other elements of the system are modular and thus relatively easy to ex-
tend, modify or replace. For example, cognitive, perceptual and motor faculties repre-
sented in the resource architecture are completely independent of the core action-se-
lection mechanism, allowing modelers to “plug-in” alternative sub-models. Similar-
ly, Apex includes a set of reusable “building blocks” for new models that can easily be
modified or added to. This document is intended mainly to support the use of Apex in
its current form but also provides important information for developing new Apex ele-
ments.

1.2 System Components

Software components of the Apex system fall into four categories or component layers
including: the intelligent agent layer, the human/environment layer, the infrastructure
layer and the user layer. The intelligent agent layer provides the ability to specify simu-
lation entities with complex behavior reflecting goals, new events and “how to” knowl-
edge. Its primary use in Apex is to model human operators, although it is also useful
for modeling other simulation entities such as robots and aircraft autopilots. The intelli-
gent agent layer currently includes a single component: the Action Selection Architec-
ture (ASA), an import from the field of artificial intelligence originally designed to con-
trol mobile robots acting in complex, real-world environments. The capabilities it pro-
vides facilitate simulation of relatively sophisticated aspects of human behavior such as
adapting to time-pressure, coping with uncertainty, and interleaving multiple tasks.

The human/environment layer includes a wide range of components for specify-
ing and making inferences about humans and other entities that populate a simulation.
Important subsets of these components are human resources models — representations
of human cognitive, perceptual and motor faculties such as hands and eyes — which to-
gether comprise the Human Resource Architecture (HRA). Each resource model speci-
fies performance-limiting characteristics. For example, the vision model specifies a re-
stricted field of view, variable acuity, and a time lag between sensing and interpreting
visual information. The agent and resource architectures combine to model a human
agent. While the Action Selection Architecture provides the ability to engage in com-

Apex Reference Manual (version 2.4.2) - Introduction &

plex behavior, the resource architecture causes this behavior to conform to human lim-
its.

Also included in the human/environment layer are means for representing and
reasoning about physical spaces (locales) and the spatial (e.g. containment, attachment,
adjacency) and visual properties (e.g. color, orientation) of objects in a locale. Oth-
er components in this layer are building blocks for constructing models in human-com-
puter interaction domains. These include representations of interface widgets (e.g. but-
tons, mice, keyboards) and of behaviors for using those widgets. The common theme
for the components of this layer is that they are ingredients for building models of hu-
man-machine systems. Though intended to be reusable, they should not be considered
core components of the Apex system. Users are encouraged to extend or replace these
elements as they see fit.

The infrastructure layer provides essential services including simulation, trace
event logging and mechanisms for interoperating with non-Apex processes such as an
external simulation of a physical environment. The simulation component is composed
of three parts: a simple language for defining “objects” to be simulated, a simulation en-
gine whose job it is to carry out the actual simulation process, and a Lisp interface for
controlling the simulation process. Some extensions to the Apex system, including de-
velopment of new human resource models, require familiarity with simulation mecha-
nisms and other components of the infrastructure layer. However, most users will prob-
ably need to know little more than how to operate the simulation engine — e.g. to begin
or pause a simulation trial.

The user interface layer provides components to facilitate model construction,
model debugging, and analysis and visualization of simulation output. The central ele-
ment of this layer is Sherpa, a GUI that provides a range of services including buttons
(shortcuts) for controlling the simulation engine, tools for handling large volumes of
trace output, tools for examining simulation entities during and after a run, and a facili-
ty for automatically generating graphical representations of agent behavior.

To apply Apex in a particular domain, a user creates a simworld — a representa-
tion of a particular task and task environment. For example, to simulate people using a
new automatic banking machine, an Apex user would represent the new machine’s ap-
pearance and behavior, the procedural knowledge needed to operate it, and a scenario
providing specifications for a particular simulation run. Together, the Apex system and
user-defined simworld elements constitute an Apex application. To develop new appli-
cations, a user should be comfortable programming in Lisp and should become familiar
with the contents of this manual.

1.3 Getting More Information

This document focuses on the practical aspects of using Apex. For the current version of
Apex and this document, visit http://human-factors.arc.nasa.gov/apex. More information is
available from several sources. Published papers describe many aspects of Apex including:

* using Apex for CPM-GOMS (John, et al. 2002)

Apex Reference Manual (version 2.4.2) - Introduction &

http://human-factors.arc.nasa.gov/apex

* GOMS analyses (Freed and Remington, 2000a)
* human error prediction (Freed and Remington, 1998)

* human-system modeling methodology (Freed and Remington 2000b; Freed,
Shafto and Remington 1998; Freed and Shafto 1997)

* multitask management (Freed 2000; Freed 1998a)

» detailed description of the Apex Action Selection Architecture and the
modeling approach it supports (Freed 1998b)

To report a bug or consult on a technical problem, contact the Apex development team,
apexhelp@eos.arc.nasa.gov. For information related to the development of the Apex
system send an email to Michael Freed, mfreed@arc.nasa.gov.

Extending and developing applications in Apex may require programming in
Common Lisp. The complete text of Common Lisp by Guy Steele is at: http:/www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/avhtml/cltl/cltl2.html.

1.4 Conventions

In order to make this manual easier to read, the following typography conventions have been
adopted. When code is shown, it appears in 11 pt Courier.
For example,

(procedure
(index (start-engine))

(step sl (turn-key))

When a section of code is of particular importance, it is in bold 11 pt Courier.
The simob class is the main focus of this example:

(defclass book (simob); BOOK is a subclass of SIMOB

User input is shown in chevrons (i.e. <>) and sometimes has a qualifying statement fol-
lowing it. For example,

(apex-info :version <versions)
where <versions is a string.
So, the actual code a user enters would look something like this:

(apex-info :version “2.4")

The syntax of programming is displayed in italic 12 pt Times New Roman similar to
this:

(procedure [:concurrent] <index-clause> <procedure-level-clause>")

Apex Reference Manual (version 2.4.2) - Introduction A

mailto:apexhelp@eos.arc.nasa.gov
mailto:mfreed@arc.nasa.gov
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html

20 Getting Started

2.1. Setting up
To use Apex you’ll need the following software:
1. The Apex system

Using a standard web browser, Apex can be downloaded from the following
web site: http://human-factors.arc.nasa.gov/apex.

Apex is available for Macintosh, Windows, Linux, and Solaris based comput-
ers. Installation is simple as Apex comes “pre-built” and ready to start.

2. Java Runtime Environment (JRE)
This is most likely already installed. If needed, the JRE may be obtained from
the Apex web site along with installation instructions (see the README file).

3. Text editor
Developing Apex applications requires programming in Common Lisp. By
default, Apex runs inside GNU Emacs, the most popular editor for Lisp pro-
gramming. However, any other text editor may be used.

2.2 Quick Tour

This section outlines the basic elements of using Apex via Sherpa, its graphical user in-
terface. Using the attached Sherpa diagrams as a reference, follow these instructions to
load, run, and inspect the results of a sample scenario modeling a person operating an
automated teller machine (ATM).

1. Start Apex

Directions for how to start and exit Apex, which vary depending upon operat-
ing system, are found in the GettingStarted.html document in the Apex instal-

Apex Reference Manual (version 2.4.2) - Getting Started &

http://human-factors.arc.nasa.gov/apex

lation folder/directory. Consulting these instructions, start Apex and its graph-
ical user interface, Sherpa.
2. Load an Application
a) Click the Start button in Sherpa. This “connects” Sherpa to the Apex sys-
tem (which runs as a separate application).

Slice View o
i Inspect View oinipect
Prasataw Evant tak Equnkze view Wiy Lak I Equalze v
| | | |
Check branch Oibject tab Maximize sico llem inspect 1ab Charge font Deleto inspect
| [
Bes { Sherpa — ATM-CPM World i
_— — e
__—_:—_—_—_-_ =
| fPoodesd Bens | | RFDE X
| | | R ==
:%i i | Al
v [AT orld N
| v 3 LOCALE-4 WORLD ety g
HWIMBERS: {([MOUIE-UP-RCT o 16} {HOUEE-DOWK-RCT . 1&) .
¥ 3] HUMAN-10 ACE f B BOUSE=MOVE=ACT . L6 (RESOURCE=ARFIVITY . 1481 (MousE . 21 E
¥ [RESOURCES | | (FOINTER . 2) (CARD-SLOT . 2} (EEMPAD . 3} (BUTTON . 16) (SCREEN .
| |
D EXTERNAL NT-10 { | mIsTame: (| 0] (P05 HMoUSE=1] WCLI 0] (LOCALE # MOUSE=1) I
3 Avpmiondo | Fli LOCRIE-4 WORLEY b1 !
s [0 memoRy - | | TOCALE: #| :‘:E.':E-E--i- WORLEY) ;
! | | DEOHENT-0F: &) INTENFACE-OBIZET-1 A]
[MGHT-HAND-10 | | mnBg: 0.01 I h i
(5 LEFT-HAND-10 | | wravos:
EWHI-ID : OBIECT: | MOKEY-SLOT-1 SONEY-SLIT '
i | | FOINTEE: 0| EDIHTER-1) &l
1 DME_IU ' The fellowing alokx had null values; |
D VISKIN-100 Putlagnly! __..-__....- eV o
j = [AGENDA i

¥ [INTERFACE-CEECT-1 ATM
¥ [l COMPONENTS
[RUTTON-15 OK-KEY
[euTTON-4 No-KEY
[4] mouse-1
[F BUTTON-3 CORRECT-KEY
[BuTTON-1 CHECKING-KEY
[puTTON-2 WITHDRAW-KEY
[MONEY-SLGT-1 MONEY-5LOT
[cArD-sLOT-1 CARD-SLOT
b (& KEYPAD-1 KEYRAD

[screen-1 screm

e } 43 104

{43 104}
b (43 104y)
104))
104%)
1940)
104y}

HIL)

} HIL)
OT) MIL)
} BIL}
b HEL)

SimSrate FINISHED | SirmTime . 10678
! [| f | T
T T Fostart | /II Changa fonl Mmamize frace Activiey
{ f |
Simulaton state Simedation time Play Step Trace o file Clear race Equalizs wiew

Figure 2.1 Sherpa S user interface: Slice View, Inspect View, and Trace View

Apex Reference Manual (version 2.4.2) - Getting Startem

b) Open an application. Select Load Application from the File menu. Using
the directory browser, open the file <apex>/examples/atm-worlds/cpm.lisp,
where <apex> is the Apex installation directory. Sherpa’s screen will change
to reveal the application control and viewing interface.

. Run the Application
Press the Play button. Events will print in the Trace View as the simulation
runs.

. Inspect Objects

The Slice View lists the scenario objects in a collapsible hierarchical fashion.
Click on the “lever” icons to expand objects. Click on objects to display infor-
mation about them in Inspect View.

. View the PERT Chart
Click on the PERT chart button to generate a PERT chart for the simulation
run. Inspect the chart and experiment with its manipulation controls.

Note that the PERT chart window has become the top view tab. To bring up
the application control interface, click on the ATM-CPM-WORLD view tab.

. Change Trace settings

Click on the Events tab to access the Event View. By default, only a small
fraction of the trace data produced during simulation is shown. To see more,
click on the Set show level drop-down menu and select asa-low, then click the
Trace button to show a new (larger) subset of the events generated in the pre-
vious simulation run. See section 3.5.1 for more on controlling trace display.

Apex Reference Manual (version 2.4.2) - Getting Started m

Event View

[CEFE

WG]
Ibh; HOUSE=]

HIMBERR: | (MOUSE-UP-ACT . 14} (MODSE-DOWH-ACT .
11ley (MODUIE-MOVE-ACT . 16) [BEBMURCE-ARCTIVITY .
{1481 [(MOUSE . 2} {POTHTER . 2) [CARD=GLOT - &)
H{EEYPRD . 2) (BUTTOH . 16) J{SCAEEM . 2] ,..)
nmm.'r | 0] (RS 4] MOOBE-1) WIL) [O] (LOCALE
8] BODSE-1] #] DECALE-4 WORLDY k)

LOCALE; #] LOCRLE=4 WORLD

COMPONENT-OF - 4] INTERFACE-OBIECT-1 AT

‘MA8B: 0.01

| BTATOS: UF

.#IJ'IJ.‘-T. B MONEY=510T=1 MIRET=510T)

;l'n!:ll'l'.lle Il FOIKTER-1]

'Tr.-t following slots had nall '.u.lu"-'i

%Ekl mET

[O] l{mn-mr-s 1-KEY} (43 104))
[6] (PBS #[BUTTOK-7 2-KEY} (43 104}}
[] #{DUTTON-8 3-KEY} (43 104)}

[2] E{BUTTON-9 4-KE¥} (43 104}}
(o] # [BUTTOH=10 5-KEY} (43 104})
1] # {BUTTON-11 6-KE¥} (43 104})
1] F{DUTTON-12 T-KE¥} (43 104}
(0] #{BUTTON-13 B-KE¥] (43 104))
[2] # [BUTTON=14 3-EEY} (43 104})
(0] # {SCREEN-1 SCREEN} WIL}

[%] F{CARD-SLOT-1 CARD-SLOT} WIL)
(O] # [MOKEY-8LOT-1 MOKEY-SLOT} HIL)
[O] # [BUTTON-2 WITHDRAW-KEY} WIL}
(0] i {BUTTON-1 CHECKING-KEY} WIL}
[3] §{BUTTON-3 CORRECT-KEY]} WIL)
(O] # {MOUSE-1} HIL)

[‘HIS

INITY

[0 # {BUTTON-4 WO-KEY} NWIL) i
§{BUTTGH-15 OK-KET} WIL) |

o |

B a8 d Sherpa - ATM-CPM Warld
I =
| @ TASK-CREATED ¥ MONITOR-CREATED
| B MONITORSATISFIED 8 ENABLEMENT-TESTING-5
' | M EMABLED A REFLISED - ENABLEMENT
| | PROCEDURE-SELECTED # CONFLICT-DETECTED
M CONFLICT}RESOLVED W PRICRITY - COMPUTED
RESOURCERALLOCATED # INTERRUPTED
M RESOURCE-DEALLOCATED M TASK-STARTED
M EXECUTED ; M RESUMED
i TERMINATED i RESET
|| REIN ATED A ASSUMPTION-VIOLATED
[
| ¥ sTaRTED # COMPLETED
™ STOPPED & MODIFIED
M NOTHING-NEW M seEm
™ pos # coLor
M ORIENTATION P sHAPE
M COMTRAST M BLINK
M ELEMENTS W coNTAINS
CONTAINED-BY M FIXATED
M WINNOWED M HELD-CAZE
ENCODED A RETRIEVED "
NEW REVALUED ____I.'
-]
— = s
Simstale FIMISHED SimTime 10678 E

——— N

Figure 2.2 Sherpa’s user interface: Event View

Apex Reference Manual (version 2.4.2) - Getting Startem

3.0 Using Apex

3.1 Interacting With Apex

Users interact with Apex mainly through three interface elements: a standard text editor
such as Emacs; Apex’s graphical user interface, Sherpa; and a Lisp interactive window,
known as a Listener. In most cases, a user will wish to have all three of these elements
available when building and running Apex applications.

A text editor is needed to create and modify Apex applications. Apex applications
are written in the Common Lisp programming language, for which the most popular ed-
itor is Emacs. By default, Apex starts up inside an Emacs “buffer window”, allowing
access to the Lisp/Emacs integration provided by Apex’s underlying Lisp system. If so
desired, a different text editor may be used.

Sherpa is used to start Apex application runs, examine application elements, and
to generate, format and display application output. It is possible to use Apex without us-
ing Sherpa. However, Sherpa provides the only means for obtaining graphical output
from a simulation (e.g. PERT charts, object trees) and for pausing an application run in-
teractively.

The Lisp Listener (or simply Listener) is an interactive text window always pres-
ent when Apex is running. Normally, this is the *apex* buffer inside Emacs. Listeners
are inherent to Common Lisp systems. Interacting through the Listener can be especial-
ly valuable when debugging Lisp code. A Listener can also be used in place of Sherpa
as a primary means of interacting with Apex?!. This can be done in two ways. First, the
user can directly invoke Lisp functions that control Apex using functions described be-
low (e.g. (startapp)). Second, a prompt-driven interface can be invoked by entering

(apex)

! Warning: using the Listener to interact with Apex while also using Sherpa may lead to
unexpected behavior — only one means should be used in an Apex session.

Apex Reference Manual (version 2.4.2) - Using Apex &

in the Listener. This provides access to all the features of Apex, except for the graphical
features of Sherpa. The prompt-driven interface is still in development; user feedback is
especially encouraged.

Listeners display debugging information and other messages while Apex runs.
Most of what is normally displayed is internal information that can be ignored. Howev-
er, if an error occurs, the Apex run is interrupted and a debugging prompt appears, ac-
companied by an error message. Such occurrences are most frequent during develop-
ment or modification of a model and are usually caused by Lisp programming errors.

3.2 Introduction to Apex Applications
Apex supports two classes of user applications:

Native applications — Applications that are fully contained in Apex. They use the Apex
simulation engine, allowing an entire application to be a single process. For example,
many Apex applications simulate one or more humans in a specified physical environ-
ment. Such applications, usually termed simworlds, include behavior models for all
agents as well as object definitions describing the structure, appearance, and relation-
ships between simulated physical objects.

Non-native applications — Applications in which one or more Apex components inter-
act with an application external to Apex such as a simulation run on another comput-
er or an embodied robot. The X-Plane® example provided with Apex is an example of a
non-native application.

3.3 Loading an Application

In order to run an Apex application, it must first be loaded into Apex. There are three
ways to do this.

1. Select from a list of recently loaded applications. In Sherpa, select Recent
Applications from the File menu. In the Listener, invoke the Apex
prompt (if necessary) by typing (apex) and enter 1oad or lower case letter
1.

By default, Apex remembers the last five applications loaded. This value
can be changed with the expression (change-load-history-size N)
where N is a natural number. This can be entered in the Listener to affect the
current session or be made persistent by placing it in your preferences file
(3.6). If desired, the load history can be cleared by typing (clear-load-
history) in the Listener.

2. Browse files and select an application to load from your local file system.

Apex Reference Manual (version 2.4.2) - Using Apex m

This is supported only in Sherpa. Select Load Application from the File
menu. 3

3. Load a specified application from the Listener. Invoke the Apex prompt (if
necessary) by typing (apex) and enter 1oad or 1. Enter the number of the
last menu selection and you’ll be prompted for an application file. Type in
the full pathname of the desired file as a string, e.g.

“c:/apexapps/myworld.lisp™

3.4 Running an Application
Once an application is loaded, it may be manipulated in the following ways:

Starting the application - In Sherpa, click the Play button. In the Listener, type
(startapp) . Unless there is user intervention, the application will run to completion
or until a scheduled pause point (simulations only) arrives.

Pausing a running application - In Sherpa, click the Pause button. (If the Pause button
is not selectable, pausing is not available for the application). It is not possible to inter-
actively pause an application in the Listener, though simulations can be programmed to
pause automatically in various ways.

Resetting the application - This restores the application to its initial state. In Sherpa,
click the Reset button. In the Listener, type (resetapp).

Single-stepping the application - Some applications have the ability to be advanced
one step (e.g. time unit) at a time. Native Apex applications are constructed using an
event driven simulation mechanism. Thus, for these applications, a step advances the
simulation to the next scheduled simulation event(s) rather than by a fixed amount of
simulated time. Click the Step button in Sherpa, which will be selectable if the appli-
cation supports single stepping. In the Listener, type (steppapp) (which will have no
effect if single-stepping is not supported).

Warning: currently this feature will not work when Sherpa and Apex are running on
different computers. In this case, you must use method (3) to load a new application (which
subsequently makes the application selectable in the recent application menu).

Warning: you must enter or select an Application Definition File (3.5.2). Loading any other
kind of file will result in an unspecified behavior.

Apex Reference Manual (version 2.4.2) - Using Apex m

3.5 Creating a New Application

The information covered in this section apply to both native and non-native Apex appli-
cations.

3.5.1 Lisp Programming and Emacs

Apex applications are computer programs written in the Common Lisp language. They
include code written in the Apex API, code written in PDL, and possibly arbitrary Lisp
code Applications are created using a text editor. Emacs is strongly recommended be-
cause of its support for Lisp programming and convenient interface to Allegro Common
Lisp®, the Lisp system upon which Apex is built. A good way to learn Emacs is from a
tutorial accessible through its Help menu.

3.5.2 Application Definition File

Loading an application (3.3) causes Apex to load an Application Definition File (ADF).
Every ADF contains the form:

(defapplication ..)
This form names the application, specifies libraries (3.5.3) and other files that need to
be loaded and defines how to initialize the application. It can also contain code that cus-
tomizes the behavior of the application as described in section 3.4. See 5.4 for detailed
information about this form. Many examples can be found in <apex>/examples, where

<apex> is a directory name created by the user at the time of Apex’s installation. A full
example of an ADF is shown in Appendix E.

3.5.3 Application Files

It is acceptable for an Application Definition File (3.5.2) to include all the code (includ-
ing PDL behavior specifications) needed for an application, but code from additional
files will often be needed. This code can be made part of the application definition in ei-
ther of two ways.

1. Files may be listed in the :files clause of defapplication (5.4).

2. Files may be loaded arbitrarily, anywhere in the ADF (3.5.2) or other Lisp
files, using the function:

(require-apex-file <filename>)

where <filename> is a string naming the file.

Apex Reference Manual (version 2.4.2) - Using Apex A

The additional application files are typically Lisp files?, but may include non-Lisp files,
such as binary files used via Lisp’s foreign function interface. An important rule is that
Lisp source files must have a Lisp extension (.1isp, .cl, or . 1sp) and non-Lisp files
must not have a Lisp extension.

All Lisp files that comprise an application, including the Application Definition
File and library files (discussed in the next section), are required to contain the form:

(apex-info :version <versions)
where <versions is a string naming the version of Apex for which the application is
written. Example application files that come with Apex already contain this form. In

newly created files, use “2.4” for <versions>. The purpose of this form is to help flag
potential incompatibilities between applications and future versions of Apex.

3.5.4 Libraries

A body of Apex code (e.g. PDL procedures, class definitions) can be shared convenient-
ly among different applications using libraries. A library is in general a collection of re-
lated definitions that are grouped together for sharing across applications. A library

might consist of one file or many files, but this difference is transparent to the users of
libraries.

3.5.4.1 Using Libraries
An existing library may be included in an Apex application in either of two ways:
1. Include its name in the : 1ibraries clause of defapplication, e.g.

(defapplication “My World”
:libraries (“human” “Boeing757-cockpit”)

w.)
2. Load it directly (on demand) with the require-apex-1library form, e.g.

(require-apex-library “human”)

3.5.4.2 Creating Libraries

Like an Apex application, a library can be one file, or have multi-file structure. It has

4 Lisp files may be loaded into Apex in either source or compiled form, but at this time
compilation of Lisp source is not performed automatically by Apex.

Apex Reference Manual (version 2.4.2) - Using Apex &

a top-level file, called a /ibrary file, which may contain Lisp code. This file may con-
stitute the entire library, or it may include other libraries (using require-apex-11i-
brary defined in 3.5.4.1) or other files (using require-apex-file defined in 3.5.3).
A library file’s name must have the suffix —apex1ib (e.g. human-apexlib.lisp). A
library may be filed anywhere, though if it has several or more files, the library can be
placed in a directory named after the library’s “base name”. For example, the human li-
brary can be found if it is filed as either human-apexlib.1lisp or human/human-
apexlib.lisp). Any number of libraries can exist and be available to applications.

3.5.4.3 Finding Libraries

The global variable *apex-1library-path* specifies where libraries are found. It is
a list of directories that are searched in the given order. The default value of this vari-
able is:

(:application “apex:apexlib” “apex:examples:apexlib”)

The special symbol :application means that the application directory itself is first
searched for libraries. The following two strings in this list use Common Lisp’s logical
pathname syntax. Any valid filename syntax for your computer platform may be used.

This search path may be modified as needed. For example, to have Apex first

look in its provided libraries directory (3.5.4.4) and then in the directory C: /me/

apexlib, enter the following form in the Listener:

(setg *apex-library-path* ' (“apex:apexlib”
“C:/me/apexlib”))

For convenience, this form may be put in the user preferences file (3.6) and thus be in
effect for all Apex sessions.

3.5.4.4 Provided Libraries
Apex comes with two sets of libraries:

1. apex:apexlib contains Components thought to be useful for a wide range
of applications

2. apex:examples:apexlib contains libraries used by the example
applications provided with Apex.

See the comments in the library files for a description of the libraries.

Apex Reference Manual (version 2.4.2) - Using Apex A

3.5.5 Worldbuilder

Worldbuilder provides a graphical interface for building physical environment mod-
els for Apex simworlds (native applications). It was created by students from Carnegie
Mellon University and is available for download at the Apex web site.

3.6 User Settings and Other Files

When Apex starts, it looks for the existence of a user settings file, and loads it if the file
exists. This is a Lisp file that users may create. It must be saved as the hidden file ~/.ap-
exprefs on Unix-like systems and apex:apexprefs in Windows. This file is for custom-
izing the user’s Lisp or Apex environment. It may contain arbitrary Lisp code, though
its common function is for setting Apex parameters such as the library search path
(3.5.4.3).

Apex automatically maintains other user-related information between sessions in
two different files. There is the hidden file ~/ . apexinfo on Unix-like systems, apex:
apexinfo in Windows, and apex:sherpa.ini on all platforms. These files are generated
and maintained by Apex. Do not edit them!

3.7 Apex Output

Running an Apex application can generate two kinds of output: event traces and PERT
charts.

3.7.1 Generating Event Traces

The activities of Apex agents and other entities (if any) are recorded as a chronology
of events in an event history. Events are displayed as single lines of text specifying the
time the event occurred, an associated agent (if relevant) and a description of the event.
For example, the following event

[4235 Fred] (TASK-STARTED #{TASK—lO (SIGN—IN)})

represents that at time 4235 the agent Fred began a task to “sign in.” By default, time
is measured in milliseconds after the start of the Apex application run. If occurring in
a simulation, this indicates simulated time — i.e. time in the chronological frame of the
simulation, not in the real world.

Events are displayed in Sherpa’s Trace View as they occur while the application
runs. The trace appears in the Listener when Sherpa is not being used. Sherpa’s trace
view has a limited scroll size and it is possible to redirect trace output to the Listener by
checking the “Trace To Listener” flag in the Trace menu. Regardless of whether events
are displayed during a run, they may be viewed after a run (or while the application has
been paused) by pressing the Trace button (see Figure 2.1). To request a trace in the Lis-

Apex Reference Manual (version 2.4.2) - Using Apex &

http://human-factors.arc.nasa.gov/apex

tener, type (generate-trace).

A simulation trace may be viewed in its entirety, but this may contain thousands
of events or more. A user can specify filter criteria to reduce the amount of trace infor-
mation displayed. Filtering criteria are applied both to trace data displayed at runtime
and to trace derived from the stored event history. Events are most often filtered based
on event type determined by the first element of an event description. For example, the
types of the two example events below are task-started and suspended, respectively.

[12 Fred] (task-started #{task-21 (fly-to-waypoint) }
[45 Fred] (suspended #{task-19 (push-button-1) }

There are three basic ways to filter event traces:

1. The first is to specify a show level. A show level is a name that specifies
a collection of event types to be shown. In Sherpa, click on the Event tab
in the leftmost display pane; all event types associated with the currently
loaded application are displayed next to checkboxes. The Show Level menu
allows selection among predefined show levels. Selecting a show level
causes event type checkboxes associated with that show level to become
checked. In the Listener, show levels are set with the show function when
used in the following form:

(show :level <level-name>)

where <level-name> is a symbol without quotes. Predefined show levels
are described in Appendix A.

2. Using Sherpa, specify particular event-types of interest. Select the event
tab as above, then click on checkboxes to toggle whether or not to have a
particular event type shown. Note that selecting or unselecting event types
modifies the choices associated with the previous show-level, though that
show-level is still displayed on the interface. In the Lisp Listener, event
types are selected with the show function when used in the following form:

(show <event-types)

where <event -type> is a symbol without quotes. Event types are listed in
Appendix A.

3. Inthe Listener (but not Sherpa), it is possible to filter events on parameters
other than, and in addition to, event types. Like the previous features, this is
done using the show function. The show function is described in Appendix
A.

Traces generated with a particular filter setting may be saved to a file by typing the fol-
lowing form in the Listener:

Apex Reference Manual (version 2.4.2) - Using Apex &

(save-trace <filename>)

where filename is a string and may either be a full pathname, or just a filename. In the
latter case, the trace is saved in the current application’s directory.

3.7.2 Generating and Examining PERT Charts

A PERT chart for a specific agent in a simulation run may be generated by selecting de-
sired agents in the Slice View, then clicking the PERT chart button located above the
trace view pane. New tabs for the PERT charts are created and displayed. If no agent
was selected, PERT charts for all agents will be generated. If there are more than 5
agents, a warning and confirmation request will appear first. PERT charts cannot be
generated via the Listener. The PERT chart view can be manipulated in several ways.

* Aslider bar provides zoom control
* The expand/contract buttons control distance between PERT boxes
* The timeline button toggles between a PERT view and a timeline view

3.7.3 Exporting a PERT Chart to Microsoft PowerPoint

Sherpa cannot create Microsoft PowerPoint® representations of PERT charts direct-

ly. Instead, it outputs Visual Basic® macros that can be read in from PowerPoint. PERT
charts you create using the procedure below will not likely fit onto one slide, but will
tend to trail off the right hand edge. You’ll need to edit charts in Sherpa and/or Power-
Point to get good results.

1. Create a PERT chart in Sherpa
2. In Sherpa, press the button with the PowerPoint icon. Then select a folder
and filename at the prompt. A Visual Basic macro representing the PERT

chart will be written out at this location.

3. From PowerPoint select from the menu: 7ools > Macro > Visual Basic
Editor. This will open the visual basic editor.

4. From PowerPoint, load the macro created in step 2.
On a Mac: From the Visual Basic interface, select Insert > Module. Select
Insert > File... Set the Show field in the dialog selection box to A// Files.

Select the file you created in step 2.

On a PC: From the Visual Basic interface, select File > Import File. Select
the file you created in step 2.

Apex Reference Manual (version 2.4.2) - Using Apex m

5. Return to PowerPoint and click on the slide to contain the PERT chart.
Select from the menu: Tools > Macro > Macros and run the macro
“CreatePERTChart”. For a large PERT chart, this may take a few moments
to complete.

Note: To remove files created in step 2 (which will otherwise accumulate), go
to the Visual Basic editor and select ModuleX in the Project window. From the
menu, then select: File > Remove ModuleX.

3.8 System Patches

Patches provide extensions, modifications or fixes to the existing Apex software without
requiring reinstallation. Users can acquire patches from the Apex web site:

http://human-factors.arc.nasa.gov/apex

The exact URL for patches is not known at the time of this writing, but you’ll be able
to find it easily. Instructions for downloading and installing patches will also be found
there, but the following is a synopsis of the process.

Download all of the .lisp files available and put them in your apex:patches di-
rectory. Delete any patch files with the same name, including any compiled versions
(e.g. those ending in .fasl). Newly installed patches will automatically be in effect the
next time you start Apex. If you wish to install the patches without restarting Apex, type
(load-apex-patches) at the Lisp prompt. A brief description of each patch is found in the
file.

3.9 Getting Help
If you experience problems with Apex, please consult the Troubleshooting sections in
this manual and in your Apex installation instructions. If necessary, contact the Apex

development team by sending email to:

apexhelp@eos.arc.nasa.gov

Email is the strongly preferred means of technical support, and usually receives fast-
er response than other means of contact. If you are reporting what appears to be a bug,
first see if you can reproduce it. Please include the following information in your email:

* Detailed description of the problem, including any error messages that
appeared (in their entirety, cut and pasted if possible), the last thing you did

before the problem occurred, and whether you could reproduce the problem.

* Your operating platform: type of computer and operating system, version of Apex
(in “Help” menu of Sherpa), and version of Common Lisp (if applicable).

Apex Reference Manual (version 2.4.2) - Using Apex &

http://human-factors.arc.nasa.gov/apex
http://human-factors.arc.nasa.gov/apex

4.0 Procedure Description Language (PDL)

“By relieving the brain of all unnecessary work, a good notation
sets it free to concentrate on more advanced problems, and, in effect,
increases the mental power of the race.”

- Alfred North Whitehead

Procedure Description Language (PDL) is a formal language used to specify the behav-
ior of Apex agents. PDL can be seen as a means of representing particular kinds of con-
tent — e.g. normative behavior as defined by standard operating procedures; a task anal-
ysis describing observed or expected behavior; a human cognitive model reflecting pro-
cedural and declarative memory. However, making effective use of PDL requires also
understanding it as a programming language for invoking the capabilities of the Apex
Action Selection Architecture. This section describes the syntax of PDL following a
brief overview of the workings of the Action Selection Architecture — see Freed (1998a
for more detail.

The central language construct in PDL is a procedure, which contains at least an
index clause and one or more step clauses. The index uniquely identifies the procedure
and typically describes what kind of task the procedure is used to accomplish. Each step
clause describes a subtask or auxiliary activity prescribed by the procedure.

(procedure

(index (turn-on-headlights)
step sl (clear-hand left-hand))
step s2 (determine-location headlight-ctl => ?loc)
step s3 (grasp knob left-hand ?loc) (waitfor ?sl ?s2))
step s4 (pull knob left-hand 0.4) (waitfor ?s3))
step s5 (ungrasp left-hand) (waitfor ?s4))
step s6 (terminate) (waitfor ?s5)))

The procedure above represents a method for turning on the headlights in some cars and

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) &

illustrates several important aspects of PDL. One important point is that a procedure’s
steps are not necessarily carried out in the order listed or even in a sequence. Instead,
steps are assumed to be concurrently executable unless otherwise specified. If step or-
dering is desired, a waitfor clause is used to specify that the completion (termination)
of one step is a precondition for the start (enablement) of another. In the example above,
the steps labeled s1 and s2 do not contain waitfor clauses and thus have no precon-
ditions; these steps can begin execution as soon as the procedure is invoked and can

run concurrently. Step s3, in contrast, includes the clause (waitfor ?sl1 2s2). This
means that step s3 becomes enabled only when steps s1 and s2 have terminated.

Procedures are invoked to carry out an agent’s active tasks. Tasks, which can be
thought of as agent goals?, are stored on a structure called the agenda internal to the Ac-
tion Selection Architecture. When a task on the agenda becomes enabled (eligible for
immediate execution), what happens next depends on whether or not the task corre-
sponds to a primitive action. If so, the specified action is carried out and then the task is
terminated. There are a limited number of primitive action types (see section 4.3), each
with a distinct effect.

If the task is not a primitive, the Action Selection Architecture retrieves a proce-
dure whose index clause matches the task. For example, a task of the form (turn-on-
headlights) matches the index clause of the procedure above and would thus be
retrieved once the task became enabled. step clauses in the selected procedure are then
used as templates to generate new tasks, which are then added to the agenda. It is con-
ventional to refer to these tasks as subtasks of the original and, more generally, to use
genealogical terms such as child and parent to describe task relationships. In this ex-
ample, there are six steps so six new tasks will be created. The process of decomposing
a task into subtasks on the basis of a stored procedure is called task refinement. Since
some of the tasks generated through this process may themselves be non-primitive, re-
finement can be carried out recursively. This results in the creation of a task hierarchy.

An Apex agent initially has on its agenda a single task specified by the user,
which defaults to the form (do-domain). All agent behavior results from tasks de-
scending hierarchically from this initial task. Thus, the specification of agent behavior
for a given application (model) must include either a procedure with the index clause

(index (do-domain))

or one whose index clause matches the specified initial task. Steps of this procedure
should specify not only the main “foreground” activities of the agent, but also any ap-
propriate background activities (e.g. low priority maintenance of situation awareness)
and even reflexes (e.g. pupil response to light).

5> The term task generalizes the concept of a classical goal — i.e. a well-defined state, expressible as a
proposition, that the agent can be seen as desiring and intending to bring about (e.g. “be at home”).
Tasks can also, e.g., encompass multiple goals (“be in car seat with engine started and seatbelt fas-
tened”), specify goals with indefinite state (“finish chores™), specify goals of action rather than state
(“scan security perimeter), and couple goals to arbitrary constraints (“be at home by 6pm”).

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) &

4.1 Action Selection Architecture (ASA)

The Action Selection Architecture® is the algorithm Apex uses to generate behavior. In-
put to the algorithm consists of events that the agent might respond to and a set of pre-
defined PDL procedures. The architecture outputs commands to resources. When used
to generate behavior for a simulated human agent, resources are representations of cog-
nitive, perceptual and motor faculties such as hands and eyes. Since the Action Selec-
tion Architecture could be used to model other entities with complex behavior such as
robots and autopiloted aircraft, resources could correspond to, e.g. robotic arms or flight
control surfaces. The Action Selection Architecture incorporates a range of functional
capabilities accessible through PDL. These functions fall into four categories:

* Hierarchical action selection

* Reactive control

* Resource scheduling

* General programming language functions

Hierarchical action selection refers to the process of recursively decomposing a high-
level task into subtasks, down to the level of primitive actions. The basic process of se-
lecting action by hierarchical task decomposition is simple. Tasks become enabled
when their associated preconditions have been satisfied. If the task is not a primitive, a
procedure whose index clause matches the task is retrieved and one new task (subtask)
is created for each step of the selected procedure. If the enabled task is a primitive, the
specified action is executed and the task is terminated.

PDL provides flexibility in controlling how and when task decomposition takes
place. The issue of how to decompose a task arises because there are sometimes alterna-
tive ways to achieve a goal, but which is best will vary with circumstance. Criteria for
selecting between different procedures are represented in the index clause (see section
4.2.2) and the select clause (4.2.5). The issue of when to decompose a task is equally
crucial since an agent will often lack information needed to select the appropriate pro-
cedure until a task is in progress. The ability to specify what needs to be known in order

to select a procedure (informational preconditions) is provided by the waitfor clause
(4.2.4).

Reactive control refers to a set of abilities for interacting in a dynamic task environ-
ment. As noted above, the ability to cope with uncertainty in the environment some-
times depends on being able to delay commitment to action; when crucial information
becomes available, the agent can select a response. Another aspect of reactivity is the
ability to handle a range of contingencies such as failure, interruption, unexpected side
effects, unexpectedly early success and so on. Integrating contingency-handling behav-

® Designated the Action Selection Architecture in other documents. To some, this term implies that the
architecture performs Al planning tasks, but not scheduling or control. The term Action selection archi-
tecture was chosen to be happily ambiguous about the underlying technology.

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) A

ior with nominal behavior is quite challenging and benefits from building certain prin-
ciples and heuristics into the architecture. For example, Apex incorporates a heuris-
tic preference for continuing an ongoing task over allowing a new task to interrupt. The
preference can be increased or negated using the interrupt-cost construct (4.2.10).
Reactive mechanisms combined with looping (4.2.6) and branching (4.2.2, 4.2.4,
and 4.2.5) allow closed-loop control —i.e. the ability to manage a continuous process
based on feedback. The combination of discrete control mechanisms such as hierarchi-
cal action selection with continuous control mechanisms allows PDL to model a wide
range of behaviors.

Resource scheduling refers to the ability to select execution times that meet specified
constraints for a set of planned actions. Typically, an overriding goal is to make good
(possibly optimal) use of limited resources. Actions can be scheduled to run concurrent-
ly unless they conflict over the need for a non-sharable resource (e.g. a hand) or are oth-
erwise constrained. For example, an eye-movement and an unguided hand movement
such as pulling a grasped lever could proceed in parallel. PDL includes numerous claus-
es and primitive action types for dynamically asserting, retracting and parameterizing
scheduling constraints (4.2.4, 4.2.8,4.2.9,4.2.10,4.3.5, 4.3.6, and 4.3.7).

Scheduling is tightly integrated with reactive control and hierarchical planning.
In a less tightly integrated approach, these functions might be assigned to modular el-
ements of the architecture and carried out in distinct phases of its action decision pro-
cess. In Apex, these activities are carried out opportunistically. For example, when the
information to correctly decompose a task into subtasks becomes available, the archi-
tecture invokes hierarchical planning functions. Similarly, when there are a set of well-
specified tasks and scheduling constraints on the agenda, Apex invokes scheduling
functions.

This has two important implications for the role of scheduling in Apex. First,
scheduling applies uniformly to all levels in a task hierarchy. In contrast, many ap-
proaches assume that scheduling occurs at a fixed level — usually at the “top” where a
schedule constitutes input to a planner. Second, the tasks and constraints that form input
to the scheduler must be generated dynamically by hierarchical planning and reactive
control mechanisms, or inferred from local (procedure-specific) constraints, evolving
resource requirements, and changes in the execution state of current tasks. Basic sched-
uling capabilities can be employed without a detailed understanding of the architecture.
For more advanced uses of these capabilities, it is hoped that the PDL construct descrip-
tions will prove helpful. Further information can be found in Freed (1998a, 1998b).

General programming language functions such as looping and branching are includ-
ed in PDL language constructs. However, the user will sometimes wish to access data
or functions not directly supported in PDL but available in the underlying Lisp lan-
guage. PDL supports callouts to Lisp that apply to different aspects of task execution
including: precondition handling (4.2.4 and Appendix D), action selection (4.2.5), spec-
ification of execution parameters (4.2.6, 4.2.9, 4.2.10, and 4.2.11), and specification of
the actions themselves (see “special procedures” in 4.2.1).

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) A

4.2 PDL Syntax

PDL syntax will be described using the following conventions:

* () all PDL constructs are enclosed by parentheses

* [] square-brackets enclose optional parameters

* <> angle-brackets enclose types rather than a literal values

* | wvertical bars separate alternative values

e { } curly brackets enclose alternatives unless otherwise enclosed
* X* means that 1 or more instances of X are required

* X" means that 0 or more instances of X are required

In addition, the following terms are used. A procedure-level clause is a language con-
struct embedded directly in a PDL procedure. Examples include index clauses and
step clauses. Step-level clauses such as waitfor are embedded directly in a step
clause. The procedure construct is itself a first-class construct, meaning that it is not
embedded in any other language element. A pattern parameter is a parenthesized ex-
pression that may contain variables (denoted as a symbol starting with a question-mark
such as ?x). Patterns, which are matched against each other by the pattern matcher (see
Appendix D), appear in several PDL clauses. A Lisp symbol is a sequence of charac-

ters that that may include alphanumeric characters, dashes, and some other characters.
A Lisp symbolic expression, or s-expression, is either a Lisp symbol or a list of symbols
and Lisp expressions enclosed by parentheses. An Apex variable is a symbol whose first
character is a question mark — e.g. ?x. Symbols and s-expressions in PDL clauses may
contain Apex variables.

4.21 procedure
Type: first-class construct

Syntax: (procedure [:concurrent] <index-clause> <procedure-level-clause>")
(procedure [:sequential|.ranked] <index-clause> <step-clause>")
(procedure :special <index-clause> <procedure-level-clause>" <s-expression>)

There are four types of procedures: concurrent, sequential, ranked and special. All types
must contain an index clause. By default, procedures are of type concurrent. This means
that all tasks generated from the procedure’s steps are assumed to be concurrently exe-
cutable, except where ordering is specified by waitfor clauses. A concurrent procedure
will usually include an explicit termination step such as s4 in the example procedure
below left. In this case, the parent task {task-15 (open door)} will terminate when the
last of its subtasks {fask-18 (push)} terminates.

(procedure
(index (open door))
(step sl (grasp door-handle))
(step s2 (turn door-handle) (waitfor 7?sl))

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) A

(step s3 (push) (waitfor ?s2))
(step s4 (terminate (waitfor ?s3))))

As in this example, it is quite common to define procedures consisting of a totally or-
dered set of steps. Such procedures can be conveniently represented using the sequen-
tial procedure syntax. The following example is equivalent to the concurrent procedure
above.

(procedure :sequential
(index (open door))
(grasp door-handle)
(turn door-handle)
(push))

A sequential procedure includes only an index clause and a list of steps to be carried out
in the listed order. No terminate clause is specified. Only the activity-description argu-
ment of each step is specified; the symbol step, the step-tag argument and step-level
clauses are not required or allowed. Sequential procedures are not really a separate type,
but an alternative syntax. PDL mechanisms automatically translate them into equivalent
concurrent procedures by adding a terminate step and waitfor clauses as needed to spec-
ify step order.

Ranked procedures abbreviate a concurrent procedure form in which rank claus-
es (4.2.13) are added to each step. Rank values in these procedures are in ascending or-
der of appearance. Thus, the following procedure is equivalent to the previous one:

(procedure
(index (open door))
(step sl (grasp door-handle) (rank 1))
(step s2 (turn door-handle) (rank 2))
(step s3 (push) (rank 3))
(step s4 (terminated) (waitfor ?sl ?s2 ?s3)))

(procedure :ranked
(index (open door))
(grasp door-handle)
(turn door-handle)
(push))

Special procedures are a way to call Lisp code directly during task execution. This is
useful for controlling and accessing data from processes external to the Action Selec-
tion Architecture and for carrying out functions that would be awkward or impossible to
represent purely in PDL. In the first example below, the procedure uses the simulation
engine function end-trial to stop the simulation from continuing (perhaps indefinite-
ly) past the point of interest.

(procedure :special

(index (stop simulation trial))
(end-trial))

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) A

In the next example, a special procedure is used to compute the distance between two
points in a plane. Values returned by the Lisp body of a special procedure are bound to
variables in the return value form (if any) of the calling step (see 4.2.3). Thus, executing
a step such as:

(step s5 (compute-distance ?pl ?p2 => ?d) (waitfor ?s4))
would cause the procedure to be called and its return value bound to the variable ?4d.

(procedure :special
; points are lists of the form (x vy)
(index (compute-distance ?pointl ?point2))
(sgrt (exp (- (first ?pointl) (first ?point2)) 2)
(exp (- (second ?pointl) (second ?point2)))))

Special procedures may include procedure-level clauses other than index, but may not
include any step clauses. When a task for which a special procedure has been select-
ed becomes enabled, that task is executed and then terminated just as if it were a primi-
tive action.

4.2.2 index
Type: procedure-level clause
Syntax: (index <pattern>)

Each procedure must include a single index clause. The index pattern uniquely identi-
fies a procedure and, when matched to a task descriptor, indicates that the procedure is
appropriate for carrying out the task. The pattern parameter is a parenthesized expres-
sion that can include constants and variables in any combination. The following are all
valid index clauses:

(index (press button ?button))

(index (press button ?power-button))
(index (press button ?button with hand))
(index (press button ?button with foot))

Since index patterns are meant to uniquely identify a procedure, it is an error to have
procedures with non-distinct indices. Distinctiveness arises from the length and con-
stant elements in the index pattern. For example, the first and second index clauses
above are not distinct since the only difference is the name of a variable. In contrast, the
3" and 4™ index clauses are distinct since they differ by a constant element.

Apex uses the pattern matcher from Norvig (1992), which provides a great deal
of flexibility in specifying a pattern. For example, the following index clause includes
a constraint that the pattern should not be considered a match if the value of the variable
is self-destruct-button.

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) A

(index (press button ?button
(?1f (not (eql ?button ?self-destruct-button)))))

In the next example, the variable ? * .button-1ist will match to an arbitrary number
of pattern elements. This provides the flexibility to create a procedure that presses a list
of buttons without advance specification of how many buttons will be pressed.

(index (press buttons (?* button-list)))

See Norvig (1992) and Appendix D for more information on the pattern matcher.

4.2.3 step
Type: procedure-level clause
Syntax: (step <step-tag> <step-description [=> {var|pattern}]> [step-level-clause]*)

step clauses in a procedure specify the set of tasks to be created when the procedure is
invoked and may contain additional information on how the tasks should be executed
(e.g. ordering constraints). Each step must contain a step-tag and step-description; op-
tionally, an output variable and/or any number of step-level clauses may be added.

A step-tag can be any symbol (as defined by Lisp), although no two steps in a
procedure can use the same tag. Step-tags provide a way for steps in a procedure to re-
fer to one another. In particular, whenever a new task is created from a procedure step,
the Action Selection Architecture creates a variable based on the step tag and binds that
variable to the new task. For example, when (step s4 (go west)) is used to create
{task-92 (go west)}, the variable ?s4 is created and bound to the data structure for task-
92. The task refinement process also generates the variable ?self which is bound to
the task being refined — i.e. the parent to task-92 in this example. This allows subtasks
to refer to their parent task.

The step-description, the part of the step clause that describes behavior, must be
a parenthesized expression corresponding either to the index of one or more procedures
in the agent’s procedure library or to a PDL primitive action type (see section 4.3). It
may contain variables. When a task is enabled, the value of the task description is set to
equal the step description with any variables replaced by values. The task description
is used to invoke a primitive action is appropriate, or if not, matched against procedure
index clauses to select the correct procedure.

The step-description may include the special symbol => followed by a variable
or other pattern. This specifies one or more output variables that become a return value
when the task derived from a step terminates. Thus,

(step sl (find volume control => ?location))
would create a task such as {task-22 (find volume control)!. When this task terminates,

it should supply a return value which will be bound to the variable ? location. See the

Apex Reference Manual (version 2.4.2) - Procedure Description Language (PDL) A

description of the ‘terminate’ primitive (section 4.3.2) for a description of how re-
turn-values are generated.

It is an error for a task description to contain a variable whose value is undefined
at the time the task is enabled. This is avoided by making task specificity a precondition
using ‘waitfor’ clauses. Some ‘waitfor’ preconditions bind values directly. For ex-
ample, (waitfor (on ?object table)) notonly waits for something to be on the
table but also binds the variable ?object as a side effect. Other preconditions wait for
the completion of tasks that insure a variable gets bound. For example, if step s2 waits
for step s1 above to complete, this insures that the variable ? 1ocation will be bound
when a procedure for s2 is selected.

424 waitfor
Type: step-level clause
Syntax: (waitfor {<pattern>|<step-tag-variable>}" [:and <test>"])

A waitfor clause defines a set of task preconditions that must be satisfied for the task
to become enabled — i.e. eligible for execution. Each pattern argument defines a single
precondition that is unsatisfied when the task is created. The precondition is considered
satisfied when a cogevent matching the pattern is detected. Cogevents are representa-
tions of events that have become available to the Action Selection Architecture. Some
cogevents are generated by the Action Selection Architecture and reflect occurrences
within it (e.g. an event signaling that some task has terminated). Others cogevents are
generated externally, typically by agent perceptual resources such as vision (e.g. to sig-
nal that an object has been detected).

It is important to note that wait for preconditions are satisfied by events, not by
states represented in memory. For example, if a task comes into existence with a pre-
condition of the form (on book table) and a proposition of the same form exists in
memory’, this will not satisfy the precondition; the task will remain in a pending (non-
enabled) state until matched to a corresponding cogevent. The Action Selection Archi-
tecture prescribes no particular method for detecting when preconditions are satisfied in
the current state. One possibility is to include a step in the procedure to explicitly check
whether a precondition is satisfied, either perceptually or by memory retrieval. Note:
only allowing events to satisfy precondi